
 1 

Feedback oscillations in STM imaging 

By Predrag Djuranovic, MIT pedja@mit.edu 

December 2005 
 
 
 

The working principle of STM is relatively simple. It is based on fundamental quantum 

mechanical principle postulated in 1920’s by Gamow and Born and the experimental 

design of STM was awarded with 1986 Nobel Prize in physics to realize atomic-scale 

resolutions. STM complexity requires fast feedback electronic design, mechanical 

vibrations and noise insulation to implement control of bringing STM tip within one 

atom’s diameter from the surface. Therefore, STM system must be fully characterized 

and very well tested, otherwise the images rendered by computer software could possibly 

be misinterpreted. 
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In order to image ligand-stabilized nanoparticles, STM feedback parameters must be 

set to perfectly trace non-planar surfaces. This can be done experimentally however 

simple theoretical considerations of the STM feedback system can give very useful 

insight in the possible effects that basic feedback control can interact with morphological 

features (nanoparticles) to result in feedback instabilities that manifest as nanoscale 

features. This short document will demonstrate that surface features Stellacci and 

coworkers describe in Nature Materials 2004 paper are direct consequence of feedback 

oscillations set by improper gain settings.   

By using the block diagram from the above, the overall transfer function of the system is 

given by the following expression: 
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where )(sG  is overall transfer function of voltage amplifier (assume ideal amplifier) and 

piezo element. )(sH  is feedback control transfer function. To analyze only impact of 

integral gain on feedback stability, a simple expression can be used for H(s): 
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where A is feedback gain. However, the transfer function for the STM mechanical system 

is not obvious. Piezo-response in control theory is typically modeled by a second-order 

response [1]. This means that the transfer function will have two poles which will result 

in oscillatory transient behavior. Typical piezoelectric actuator may have transfer 

function: 
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where pk  is the DC response of the piezoelectric (angstroms/volt),  ω  is the lowest 

resonance frequency , Q is the quality factor,  and alpha determines the phase output.  

Therefore, the sole goal of the feedback control is to minimize the error function (actual 

minus reference reading) and this can be achieved only if the feedback system is stable       

(poles are on the left-hand side of the s-plane) and transient response must be appropriate 

for experimental requirements (oscillations must quickly exponentially decay) before 

scanner proceeds to the next scan point. 

Coefficients in equation 4.3 can be obtained by applying a unit step reference signal to 

the piezo-actuator and reading the output on an oscilloscope. The Fourier transform of 

such measured response will contain several resonance peaks and each can be fit in the 

following form: 

                                                 )()( DCtSinAetf Bt += −                                             (4.4) 

Any of them can be used to adequately model the system response. Laplace transform 

into s-space of Eq. 4.4 is compared to estimate unknown parameters in Eq. 4.3. 

Typical values for a piezo actuator are used from reference [1] and they can be 

used to qualitatively describe feedback response: 
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The stability of feedback loop can be directly verified by plotting the poles in the 

complex plane as a function of the feedback parameter A. Such plot can be used to 

determine the maximum value of A for imaging stability. However, much more 

sophisticated models have been developed to analyze STM feedback [2] that are beyond 
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the scope of this document and unnecessary to invoke as the imaging problem can be 

explained more elegantly by the second-order linear response model. 

Figure 4.1 illustrates the step response to a unit step excitation for three different 

values of integral gain. It can be noticed that increasing integral gain will improve 

response but will also lead system into oscillations. 

 

Figure 0-1. Step response for three different feedback parameters. Purple line corresponds to maximum 
allowable feedback parameter, all values beyond this one will produce exponentially increasing feedback 
oscillations. 

 

Figure 4.1 also indicates that second-order system response system will equilibrate after 

about 20 ms. Images of nanoparticles are collected in 512x512 mode at scanning 

frequencies of 2 Hz (or higher) thus yielding a serious requirement of 0.5 ms for feedback 
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to respond. Increasing the gain of integral controller will improve the rise time by just 

few milliseconds (Figure 4.2) but so it will increase the oscillatory behavior thus finally 

leading toward unstable state or feedback oscillations. (Figure 4.3)  

 

Figure 0-2.  Feedback oscillations. Integral gain is set beyond the critical value. 
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Figure 0-3. Obvious exponential increasing of amplitude of oscillations. Feedback parameter was set high. 
Such oscillations may occur in STM systems and are usually terminated when STM ends up tip in the 
substrate.  

In order to obtain faster dynamic response, the derivative controller must be introduced. 

The derivative feedback signal responds to rates of change of error signal instead of the 

error value. Since derivative signals don’t measure the sign of the error they must be 

combined with integral gain to allow ideal response. Derivative gain can be modeled as: 
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where cω  is the cutoff frequency preventing amplifying high frequency noise in the 

system. By introducing this gain, response time changes to a few milliseconds (Figure 4-

4). 
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Figure 0-4. Step response improved to about 3 ms by using both differential and integral gain(which is set 
10 times the maximum allowable if only integral controller was implemented) 

 

Therefore, combination of integral and proportional gain provides faster response but 

control theory indicates the potential for instabilities. For most applications integral or 

integral and proportional gains will satisfy the requirements, however in the case of 

imaging nanoparticle samples with large curvature, a full proportional-integral-

differential (PID) control system is necessary to provide fast response.  

Step inputs are generally used to set the standard of controllers in terms of requirements 

such as overshoot amplitude and rise time. In order to qualitatively illustrate the response 

of STM feedback controls on realistic inputs such as hemispherical particles on a flat 

substrate, Matlab provides powerful toolbox for analysis.   
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Equation 4.1 represents the overall transfer function for STM feedback and is used in all 

Matlab simulations.  Initially, only integral gain is considered. The duration of the input 

signal is 60 ms and the integral gain is set to track surface as faithfully as possible:  

 

Figure 0-5. Feedback response to reference signal that resemble nanoparticle surface. Only integral gain is 
utilized. Signal length is simulated to be 60ms and feedback parameters are extracted from [18].  

 
Figure 4-5 shows that high integral gain will overall follow the curvature but with 

oscillatory behavior. In order to simulate STM scanning and predict images that could be 

obtained by improper feedback settings, scanning is now allowed in two dimensions. 

Figure 4.5 shows the result of 2D simulation in which fringes that follow the curvature 

become apparent. In general, when scanning starts over curved surface, due to feedback 

oscillations fringes will follow the curvature and converge to two points on the image 

(Figures 4-6 and 4-7). 
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Figure 0-6. 3D rendering of scanning. Feedback oscillations produce fringes that converge to two poles.   
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Figure 0-5. Illustration similar to the previous figure but for 6 ms signal input so that number of fringes 
decreases. Convergence of the fringes at the “poles” is seen. 

 

Figure 0-6. Actual STM data. Image of either CdSe nanoparticle conglomerate on gold foil surface or 
perhaps simply a surface irregularity on a gold foil substrate that indicate the same convergence predicted 
by second-order linear feedback model. 
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In order to eliminate surface tracking problem (correct tracking without oscillatory 

behavior), differential gain is introduced. With the differentiator, tracking becomes good 

and suppresses exponentially growing integral feedback oscillations. Overall, differential 

gain shortens the rise time to only a few milliseconds (Figure 4.8)  

 :  

Figure 0-7. Differential gain is introduced. Surface tracking becomes obviously better as now integral gain 
can be boosted over the critical point. Differentiator suppresses integral feedback oscillations.   

 

However, Matlab simulation with larger integral gains reveals surface features that match 

STM experimental data.  In general, all STM data contains zigzag features that Stellacci 

and coworkers attribute to perfectly visible hexagonally packed molecular head groups. 

However, this is not true as the simulation predicts the same features as results of 

scanning artifacts (Figure 4-9 and 4-10). These zigzag features are experimentally 



 12 

apparent scanning artifacts as they always belong to scan lines and never change their 

orientation upon orientation of the substrate. As observed in STM experiments (Figures 

4.11 and 4.12), such regions are only a few scan lines wide which match with the results 

of Matlab simulation in Figure 4-8. 

Hexagonal dots in both theoretical an experimental data appear as beats in feedback 

oscillations thus generating: 

1. fringes,  if in two consecutive scanning rows peaks are shifted by the same 

amount which produces visual effect of fringes  

2. zigzag features, if two consecutive scanning rows are shifted enough that 

mismatch produce zigzag visualization effect  

 

 

 

 

 

Figure 0-8. Result of Matlab simulation at which integral is set beyond critical point. Hexoganaly packed 
feedback oscillation appear at the beginning of scanning and transform into fringes.  
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Figure 0-9. Similarly to the previous figure, but now hexagonal packing is more apparent after the tip goes 
off the surface of nanoparticle, phenomenon noticed constantly in real STM experiments.   
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Figure 0-10, Real STM image of gold nanoparticles. Size bar is 10nm. Image directly extracted from [16] 
indicating the same type of feedback artifacts illustrated in the previous figures. Notice that hexagonal dots 
run directly along scan lines, on and off nanoparticle surface, in the same form as in theoretical simulation.  
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Figure 0-11.  STM image of ITO surface without ligands. The same feedback artifact is observed 
indicating that STM images are not images of molecules on the surface but are images with feedback 
oscillations that propagate along scan lines. 
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A simple Matlab simulation becomes quite enough to qualitatively demonstrate 

appearance of false surface features upon applying improper gains on curved surfaces. 

However, if such surface features exist, experimentally: 

A. then they will be scan speed independent  

B. would not consist of features always belonging to the scan lines (statistically 

impossible) 

C. fringes would rotate with different substrate orientation 

D. current error should be minimal (this eliminates feedback artifacts) 

Imaging larger areas of nanoparticles experimentally fails on all criteria. Matlab 

simulations certainly do not and are not intended to reproduce STM data. However, only 

one parameter (integral gain) simulation of response of second order linear system 

undoubtedly demonstrates all STM experimental features thus concluding the work of 

Stellacci et all completely erroneous.  

It was argued previously that fully implemented PID controller will enable faster 

feedback response. In order to reduce the risk of improper surface tracking even more, 

images with smaller scan sizes (between 50 and 100 nm) must be generated if STM is 

working in constant-current mode.  Scan speed must be set precisely to allow feedback 

system to accurately achieve set point. Therefore, prior to imaging, feedback loop must 

be fully characterized to understand the limits of feedback response as function of scan 

rate/speed. In order to observe molecular features on the nanoparticles surface it also 

must be reassured that noise level of the voltage preamplifier is acceptable. In general, in 

constant current mode, feedback oscillations are the most damaging to imaging as it is 

not always obvious what cause them. The most obvious reason is improperly set gains 
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and this problem can be alleviated by dropping the gains. If feedback oscillations appear 

as a function of proportional gain, then reducing lower cut off frequency will solve the 

problem. In case of derivative feedback, reducing the derivative gain will set system into 

oscillations (due to integral gain instability).  

Therefore the whole problem of feedback oscillations is very well known in STM 

metrology and it may give meaningless results. The best way of securing the system of 

oscillations is during imaging: to monitor carefully the tunneling current and assure that 

oscillatory behavior in tunneling current doesn’t appear.  
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